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This is a brief introduction to the ideas and concepts of
nonlinear mechanics, and a discussion of various quantitative
methods for analyzing such problems

We will focus on the driven damped pendulum (DDP)
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Figure 12.1  The three important forees on the driven damped pen-
dulum are the resistive force with magnitude bu, the weight mg,
and the driving force F(r). (There is also a reaction force from the
pivot at the top, but this contributes nothing to the torque.)
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Driven, Damped Pendulum (DDP)

mL%¢ = —mgsin¢p — bL%¢p + LF(t)

Driving force: F(t) = F cos(wt)

Damping constant: § = %

Natural frequency: w, = %
. . B &

Drive strength: y = o

é + 2 b+ o sin(@) = yw? cos(wt)

We expect something interesting to happen asy — 1,
i.e. the driving force becomes comparable to the weight
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NDSolve in Mathematica

Figl2p2 = NDSolve[{¢""[t] +2B¢" [L] +wo"2SIN[¢[T]] = ywo"2CoS[w L], ¢[0] = 0, ¢"[0] = 0}, ¢, {t, O, 6}]
{{¢ - InterpolatingFunction[{{0., 6.}}, <>1}}

Plot[Evaluate[o¢[t] /- FIgl2p2], {t, O, 63}, Ticks » ({1, 2, 3, 4,5, 6}, {-0.3, 0.33}, PlotRange -» All,
AxesStyle - Thick, PlotStyle -» Thick, LabelStyle -» {Bold, Medium}]




Driven, Damped Pendulum (DDP)

6 + 2+ & sin(@) = yw? cos(wt)

For all following plots:

=2
Period =2t/ =1
@, =1.5w

L=w,l4
#(0)=¢(0)=0




Small Oscillations of the Driven, Damped Pendulum

v << 1 will give small oscillations

Linear ¢ + 2ﬂ¢ + 0)02¢ = 7/6()5 COS(C()t)

WAL
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After the initial transient dies out, the solution looks like

¢(t) — ACOS(C()t — 5) Periodic “attractor”




Small Oscillations of the Driven, Damped Pendulum

v << 1 will give small oscillations

1) The motion approaches a unique periodic attractor
independent of initial conditions

2) The motion is sinusoidal with the same frequency as the drive

#(t) = Acos(awt — o)



Moderate Oscillations of the Driven, Damped Pendulum

Y <1 and the nonlinearity becomes significant...

é+ 2ﬂ¢+ a)02 ¢—%¢3 ~ 7/6002 cos(mt)
Try ¢(t) = Acos(at — o)

1
This solution gives from the ¢3 term: cos’ x = Z(COS 3x+3c0s )

Since there is no cos(3wt) on the RHS, it must be that ¢ ’ ¢ ’ ¢
all develop a cos(3wt) time dependence. Hence we expect:

#(t) = Acos(wt — 5) + B cos|3(at — )]
B<<A

We expect to see a third harmonic as the driving force grows




Harmonics
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Moderate Driving: The Nonlinearity Distorts the cos(wt)

d(t) y=0.9 OO

T

-cos(3wt)

The motion is periodic, but ...
The third harmonic distorts the simple ¢(t) = Acos(wt — o)




Even Stronger Driving: Complicated Transients — then Periodic!

After a wild initial transient, the motion becomes periodic
o(t) y=1.06
4 it

2 it |

P , - - L t
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After careful analysis of the long-term motion, it is found to be periodic
with the same period as the driving force




Slightly Stronger Driving: Period Doubling

After a wilder initial transient, the motion becomes periodic, but period 2!

d(t)
4 mt
v=1.073
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The long-term motion is TWICE the period of the driving force!
A SUB-Harmonic has appeared



Harmonics and Subharmonics
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Slightly Stronger Driving: Period 3

The period-2 behavior still has a strong period-1 component
Increase the driving force slightly and we have a very strong period-3 component

¢(t) v =1.077
4 7t

2t

e
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Multiple Attractors

The linear oscillator has a single attractor for a given set of initial conditions

For the drive damped pendulum:
Different initial conditions result in different long-term behavior (attractors)
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v =1.06

o(t)

5 A / Early-time motion
{\ t Close-up of steady-state
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Period Doubling Cascade
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Period Doubling Cascade




‘Bifurcation Points’ in the Period Doubling Cascade
#(0) =712
$(0)=0

Driven Damped Pendulum

The spacing between consecutive bifurcation points grows smaller at a steady rate:

1
(7/n+1_7/n)zg(7/n_7/n_l) ‘¥’ > ‘=asn — ©
0 =4.6692016 is called the Feigenbaum number

The limiting value as n — oo is y, = 1.0829. Beyond that is ... chaos!



Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of y

Such period-doubling cascades are seen in many nonlinear systems
Their form is essentially the same in all systems — it is “universal”
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(1) y=1.105
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The pendulum is “trying” to oscillate at the driving frequency, but
the motion remains erratic for all time

N




Chaos

 Nonperiodic
e Sensitivity to initial conditions




Sensitivity of the Motion to Initial Conditions

Start the motion of two identical pendulums with slightly different initial conditions
Does their motion converge to the same attractor?
Does it diverge quickly?

Two pendulums # (1), ¢,() are given different initial conditions

Follow their evolution and calculate Ag(t) = ¢,(t) — ¢ (1)

For a linear oscillator ¢(t) = Acos(wt—5)+C.e™ +C,e”

Long-term / \ Transient

attractor behavior

h,=-p+ i, underdamping, w; = \/ w?* — f?

The initial conditions affect the transient behavior, the long-term attractor is the same

Hence  Ag(t) = De " cos(ajt - 6,)

Thus the trajectories will converge after the transients die out



Convergence of Trajectories in Linear Motion
Ad(t) = De " cos(awt — &,)
Take the logarithm of |A#(t)| to magnify small differences.

In[| Ag(t) [1= In(D) - St +In[| cos(at — &,) |]

Plotting log,,[|4#(t)|] vs. t should be a straight line of slope —3,
plus some wiggles from the In[|cos(w,t — d,)|] term

Note that log,,[x] = log,,le] In|x]



Convergence of Trajectories in Linear Motion

Logo[|Ad(t)]]

2 4 6 3 10 ¢
v=0.1

A¢(0) = 0.1 Radians

—10}

—12t
The trajectories converge quickly for the small driving force (~ linear) case

This shows that the linear oscillator is essentially insensitive to its initial conditions!




Convergence of Trajectories in Period-2 Motion

Log,[lAd()]1 | | | | | |
5 10 15 20 25 30 35 40t

| v =1.07

—2t A¢(0) = 0.1 Radians
—4}

—6}
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The trajectories converge more slowly, but still converge



Divergence of Trajectories in Chaotic Motion

=1.105
Log,,[|Ad(t o
810£|- o(t)] A¢(0) = 0.0001 Radians

If the motion remains bounded, as it does
in this case, then A¢ can never exceed 2.
Hence this plot will saturate

The trajectories diverge, even when very close initially
Ap(16) ~ 1, so there is essentially complete loss of correlation between the pendulums

Extreme Sensitivity to Initial Conditions
Practically impossible to predict the motion



The Lyapunov Exponent

‘A¢(t)‘ ~ Ke* K >0

A = Lyapunov exponent

A <0: periodic motion in the long term

A>0: chaotic motion
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What Happens if we Increase the Driving Force Further?
Does the chaos become more intense?

Ap(0) = 0.001 Radians
o(t) y=1.13 Log,[[A0®]]

LA gy

A N

Period 3 motion re-appears!

With increasing y the motion alternates between chaotic and periodic



What Happens if we Increase the Driving Force Further?
Does the chaos re-appear?

Ap(0) = 0.001 Radians
(1) y=1.503 ¢ Loz, llAgm]
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Chaotic motion re-appears!

This is a Kind of ‘rolling’ chaotic motion



Divergence of Two Nearby Initial Conditions
for Rolling Chaotic Motion

o(t) v =1.503 t

5 10 15 20 25

—10 7}

Ap(0) = 0.001 Radians

—20 7}

Chaotic motion is always associated with extreme sensitivity to initial conditions

Periodic and chaotic motion occur in narrow intervals of y



Bifurcation Diagram
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Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of y

Such period-doubling cascades are seen in many nonlinear systems
Their form is essentially the same in all systems — it is “universal”

Sub-harmonic frequency spectrum
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FIG. 1. Experimental apparatus for subharmonic o Y T o oy oy a1
generation. 0 Frequanty /2
FIG. 5. Power spectral density (dB) vs frequency
for = 98 kHz, dynamic range 70 dB, showing sub-
Perlod Doubling and Chaotic Behavior In a Driven Anharmonlc Oscillator harmoniecs to f/32. The components agree with pre-
Paul S. Linsay diction (dashed bars, Ref, 14) within 2 dB rms devia-

tion, except for the peak at /16,

Evidence for Universal Chaotic Behavior of a Driven Nonlinear Oscillator
James Testa, Jos€ Pérez, and Carson Jeffries



Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of y

Such period-doubling cascades are seen in many nonlinear systems
Their form is essentially the same in all systems — it is “universal”
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Figure 3.7.  Period doubling in seizures and in thermoconveetion. (A), intracranial recording from a | 3.63 ll[ |I EH ‘I‘ﬂ PMU “UJJ L
patient suffering temporal lobe seizures. The left-hand side recordings show how the length of the period,

marked by the rectangles, doubles during the seizure, while the right-hand side recording corresponds to

a posterior time toward the end of the seizure where more complex aperiodic activity is apparent due to ‘ é, E-Iﬂ T 1-'5[; Q_-Eju
successive period doublings. (B), o illustrate how period doubling was defined in classic studies and the | Tlvee!

similarity with the intracerebral recording, doubling of the pericds in a thermoconvection experiment A period doubling cascade in convection of mercury in a small
is shown. The time series is the temperature of a fiuid, note the subharmonic cascade as the control — copvection cell. The plots show the temperature at one fixed
parameter of the system changes. The line segments indicate the duration of one period. Panel A is point in the cell as a function of time, for four successively
reprinted with penmission from Peres Velaeguer of af. (2003 and panel B from Bergé of af. (19584). larger temperature gradients as given by the parameter R/R,

The Brain-behaviour Continuum: The Subtle Transition Between Sanity and Insanity Fig. 12.9, Taylor
By Jose Luis. Perez Velazquez




Bifurcation Diagram

Used to visualize the behavior as a function of driving amplitude vy

1) Choose a value of y
2) Solve for ¢(t), and plot a periodic sampling of the function

o), Pt +1), ot +2), ot +3), 4L, +4),...

t, chosen at a time after the attractor behavior has been achieved
3) Move on to the next value of vy
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Construction of the Bifurcation Diagram

o(t)
v=1.06 —2'” "u
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The Rolling Motion Renders the Bifurcation Diagram Useless

o(t) y=1.503 t

5 10 15 20 25

—10 7}

Ap(0) = 0.001 Radians

—20 7}

As an alternative, plot ¢(t)



#(t) Bifurcation Diagram Over a Broad Range of y
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Period-1 Rolling Motion aty=1.4

v=1.4
A(t)
o s 5t m
d(t) IOMMMI\
10} ‘S
LV

=20 &t

Even though the pendulum is “rolling”, 4(t) is periodic




An Alternative View: State Space Trajectory

Plot #(t) vs. ¢(t) with time as a parameter

ﬁ&“wmﬂﬂﬂﬂﬂh
s

periodic
attractor

#(t) #(t)

&8t
&8

First 20 cycles Cycles 5 -20 Fig. 12.20, 12.21



An Alternative View: State Space Trajectory

Plot 4(t) vs. ¢(t) with time as a parameter
. v = 0.6
) #(0) =0 0
$(0) =0

o(t) | | (t)

periodic
attractor

First 20 cycles Cycles 5 -20
The periodic attractor: ¢(t) = Acos(wt — o)
[#(t),4(t)] is an ellipse ¢('[) = —Awsin(wt - 5)

The state space point moves clockwise on the orbit
Fig. 12.22



State Space Trajectory for Period Doubling Cascade

v=1.078 y=1.081
A(t) A(t)
10} 10t
| . AN S . 4(1)
-10 -10
Period-2 Period-4
Plotting cycles 20 to 60

Fig. 12.23



State Space Trajectory for Chaos

y=1105 %0
10l Cycles 14 - 21
= : é(t)
\ —~10} |
#(1)
\§

The orbit has not repeated itself...




State Space Trajectory for Chaos

Yy =13 Chaotic rolling motion
P =8 Mapped into the interval -t < ¢ <m
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This plot is still quite messy. There’s got to be a better way to visualize the motion ...



The Poincaré Section

Similar to the bifurcation diagram, look at a sub-set of the data

1) Solve for ¢(t), and construct the state-space orbit
2) Plot a periodic sampling of the orbit

6(t), ()} lo(t, +2), (t, + D] |t +2), (1, +2))..

with t; chosen after the attractor behavior has been achieved

Yy =1.5 pe=r=-

B — (00/8 y=1.5 Samples 10 — 60,000




The Poincaré Section is a Fractal

The Poincaré section is a much more
elegant way to represent chaotic

T "I.I
(2 =N m



The Superconducting Josephson Junction as a Driven Damped Pendulum

Josephson Effect

e' ¥, =

Y, =¥, e

Superconductar 1

Y,
Superconductar 2

e

Electron Pair

- Cxide Layer (Tunnel barrier)

I
—

[= |
UT —L_': = '] Lsng _ The Josephson
—[ Tdl. 28V Equations

¢ =¢,—¢, = phase difference of SC wave-function across the junction
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Radio Frequency (RF) Superconducting Quantum Interference Devices (SQUIDs)
(Dapplied +O = rICDO
D40 ( L ®y dd D d25)

induced
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Waveguide

Reflection 4
A(W\_ | rf SQUID metamaterial
AvAvAY " ---------------- §; JPKRS TC
[nput VBrf Bae “Transmission
(a)
(b) Experiment, 4.6 K (¢) Simulation, 4.6 K [S21 (dB)
<200 == 0
. S S
O 18| —46K I —46K 11
—~ . |2, |—56K 2 [---5.6 K
8 16'%1 'gl i 1-0.10
2 14| & ™
E 5 T = . : -
— 0 F—— - — _me
120 B . 0.20
10L ’ LOglo(Qrf/(DQ) o . LogIO((I)rf/(I)O) _
-3 -2 -1 -3 -2 -1
Log;o(D,: /D) 0Z10(D;e/Dy)

Single rf-SQUID D. Zhang, et al., Phys. Rev. X (in press), arXiv:1504.08301



Frequency (GHz)
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D. Zhang, et al., Phys. Rev. X (in press), arXiv:1504.08301
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THz Emission from the Intrinsic Josephson Effect
A classic problem in nonlinear physics

153 nm

Mesa with
gold contact

L. Ozyuzer, et al., Science 318, 1291 (2007)

24 :
{T=30K 0610 THz —0.672THz || | Mw=720 |
. — (0858 THz —0772THz
: S -08
A I
424 B
4B L #
n -07
4 :,."'q. ¢
ic / i\\_ A
'R.‘ gy \ -0
0 r 1 1 T T | I ' | . 1
0.e0 0.65 0.70 0.75 0.80 0.85 09 11 13
Frequency (THz) Voltage (V)

(ZHL ) fouanbaay

do 2n

dt @,

I=1I,sing

®,=h/2e =2.07 x 105 Tm?

f, = %v =(0.483 THz/mV)V

DC voltage on junction creates
an oscillating ¢(t), which in turn
creates an AC current that
radiates

Best emission is seen when the crystal is
partially heated above T_!

Results are extremely sensitive to details
(number of layers, edge properties, type
of material, width of mesa, etc.)

Many competing states do not show
emission

Emission enhanced near cavity mode
resonances — requires non-uniform
current injection, assisted by inhom.
heating, n-phase kinks, crystal defects



Chaos in Newtonian Billiards
Imagine a point-particle trapped in a 2D enclosure and making
elastic collisions with the walls

Describe the successive wall-collisions

Sy with a “mapping function”
R 4
2 a
....... 4. Sn+1 — f (Sn J en) .
........... ~ Linear Maps for “Integrable” systems !!
..... B
Q.Q """ TSO 9n+1 =g (Sn ) en)

0 -

Sy = 1(S,,6.)
9n+1 = g(sn’en)

~ Non-Linear Maps for “Chaotic” systems !!

* The “Chaos” arises due to the shape of the boundaries enclosing the system.

Computer animation of extreme sensitivity to initial conditions for the stadium billiard




