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This is a brief introduction to the ideas and concepts of 
nonlinear mechanics, and a discussion of various quantitative
methods for analyzing such problems

We will focus on the driven damped pendulum (DDP)
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Driven, Damped Pendulum (DDP)

We expect something interesting to happen as → 1, 
i.e. the driving force becomes comparable to the weight



A Route to Chaos
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Small Oscillations of the Driven, Damped Pendulum

 << 1 will give small oscillations
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After the initial transient dies out, the solution looks like

Periodic “attractor”

Linear



Small Oscillations of the Driven, Damped Pendulum

 << 1 will give small oscillations

1) The motion approaches a unique periodic attractor
independent of initial conditions

2) The motion is sinusoidal with the same frequency as the drive
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Moderate Oscillations of the Driven, Damped Pendulum

 < 1 and the nonlinearity becomes significant…
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Since there is no cos(3t) on the RHS, it must be that
all develop a cos(3t) time dependence.  Hence we expect: 
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We expect to see a third harmonic as the driving force grows



Harmonics
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Moderate Driving: The Nonlinearity Distorts the cos(t)

The third harmonic distorts the simple )cos()(   tAt
The motion is periodic, but …



Even Stronger Driving: Complicated Transients – then Periodic!
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After a wild initial transient, the motion becomes periodic

After careful analysis of the long-term motion, it is found to be periodic
with the same period as the driving force
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Slightly Stronger Driving: Period Doubling

 = 1.073

(t)

t

After a wilder initial transient, the motion becomes periodic, but period 2!

The long-term motion is TWICE the period of the driving force!

22 24 26 28 30
-8.5

-8.

A SUB-Harmonic has appeared



Harmonics and Subharmonics
Subharmonic



Slightly Stronger Driving: Period 3
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Period 3

The period-2 behavior still has a strong period-1 component
Increase the driving force slightly and we have a very strong period-3 component



Multiple Attractors

For the drive damped pendulum:
Different initial conditions result in different long-term behavior (attractors)
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The linear oscillator has a single attractor for a given set of initial conditions
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Period Doubling Cascade
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Period Doubling Cascade

 = 1.06

 = 1.078
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n        period         n interval (n+1-n)

1        1 → 2       
0.0130

2        2 → 4       
0.0028

3        4 → 8       
0.0006

4        8 → 16     

‘Bifurcation Points’ in the Period Doubling Cascade

Driven Damped Pendulum
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The spacing between consecutive bifurcation points grows smaller at a steady rate:
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 = 4.6692016 is called the Feigenbaum number

‘≈’ → ‘=’ as n → ∞ 

The limiting value as n → ∞ is c = 1.0829.  Beyond that is … chaos!



Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of 

Such period-doubling cascades are seen in many nonlinear systems
Their form is essentially the same in all systems – it is “universal”



Period infinity 
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Chaos!

The pendulum is “trying” to oscillate at the driving frequency, but
the motion remains erratic for all time



Chaos

• Nonperiodic
• Sensitivity to initial conditions



Sensitivity of the Motion to Initial Conditions

Start the motion of two identical pendulums with slightly different initial conditions
Does their motion converge to the same attractor?
Does it diverge quickly? 
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Follow their evolution and calculate
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Transient
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The initial conditions affect the transient behavior, the long-term attractor is the same

Hence

Thus the trajectories will converge after the transients die out



Convergence of Trajectories in Linear Motion
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Take the logarithm of  |(t)| to magnify small differences.

Plotting log10[|(t)|] vs. t should be a straight line of slope –
plus some wiggles from the ln[|cos(1t – 1)|] term

Note that log10[x] = log10[e] ln[x]
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Convergence of Trajectories in Linear Motion

The trajectories converge quickly for the small driving force (~ linear) case
This shows that the linear oscillator is essentially insensitive to its initial conditions!
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Convergence of Trajectories in Period-2 Motion

The trajectories converge more slowly, but still converge



2 4 6 8 10 12 14 16

-6

-5

-4

-3

-2

-1

1
Log10[|(t)|]

t

 = 1.105
(0) = 0.0001 Radians

Divergence of Trajectories in Chaotic Motion

The trajectories diverge, even when very close initially
(16) ~ , so there is essentially complete loss of correlation between the pendulums

If the motion remains bounded, as it does
in this case, then  can never exceed 2.
Hence this plot will saturate

Extreme Sensitivity to Initial Conditions
Practically impossible to predict the motion



The Lyapunov Exponent

tKet  ~)(

 = Lyapunov exponent

 < 0:   periodic motion in the long term

 > 0:   chaotic motion

0K



Linear Nonlinear
Chaos

Drive period Harmonics,
Subharmonics,
Period‐doubling

Nonperiodic,
Extreme sensitivity

 < 0  < 0  > 0



t
 = 1.13

(0) = 0.001 Radians

What Happens if we Increase the Driving Force Further?
Does the chaos become more intense?
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Period 3 motion re-appears!

With increasing  the motion alternates between chaotic and periodic



t

 = 1.503
(0) = 0.001 Radians

What Happens if we Increase the Driving Force Further?
Does the chaos re-appear?

(t) Log10[|(t)|]

Chaotic motion re-appears!
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This is a kind of ‘rolling’ chaotic motion
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Divergence of Two Nearby Initial Conditions 
for Rolling Chaotic Motion

Chaotic motion is always associated with extreme sensitivity to initial conditions

Periodic and chaotic motion occur in narrow intervals of 



Bifurcation Diagram



Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of 

Such period-doubling cascades are seen in many nonlinear systems
Their form is essentially the same in all systems – it is “universal”

Sub-harmonic frequency spectrum
Driven Diode experiment

F0 cos(t)

/2



Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of 

Such period-doubling cascades are seen in many nonlinear systems
Their form is essentially the same in all systems – it is “universal”

The Brain-behaviour Continuum: The Subtle Transition Between Sanity and Insanity
By Jose Luis. Perez Velazquez

Fig. 12.9, Taylor

A period doubling cascade in convection of mercury in a small
convection cell.  The plots show the temperature at one fixed
point in the cell as a function of time, for four successively 
larger temperature gradients as given by the parameter R/Rc



Bifurcation Diagram

Used to visualize the behavior as a function of driving amplitude 

1) Choose a value of 
2) Solve for (t), and plot a periodic sampling of the function

t0 chosen at a time after the attractor behavior has been achieved
3) Move on to the next value of 
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Construction of the Bifurcation Diagram

Period 6
window
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The Rolling Motion Renders the Bifurcation Diagram Useless

As an alternative, plot )(t
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Bifurcation Diagram Over a Broad Range of )(t

Rolling Motion
(next slide)



Period-1 Rolling Motion at  = 1.4
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An Alternative View: State Space Trajectory

)(tPlot         vs.       with time as a parameter)(t
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An Alternative View: State Space Trajectory

)(tPlot         vs.       with time as a parameter)(t

Fig. 12.22
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The state space point moves clockwise on the orbit
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State Space Trajectory for Period Doubling Cascade
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State Space Trajectory for Chaos

 = 1.105
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Cycles 14 - 21

Cycles 14 - 94

The orbit has not repeated itself…



State Space Trajectory for Chaos

 = 1.5
 = 0/8

Cycles 10 – 200

Chaotic rolling motion
Mapped into the interval – <  < 

This plot is still quite messy.  There’s got to be a better way to visualize the motion …



The Poincaré Section

Similar to the bifurcation diagram, look at a sub-set of the data

1) Solve for (t), and construct the state-space orbit
2) Plot a periodic sampling of the orbit

with t0 chosen after the attractor behavior has been achieved
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 = 1.5
 = 0/8 Samples 10 – 60,000

Enlarged on the next slide



The Poincaré Section is a Fractal

The Poincaré section is a much more
elegant way to represent chaotic
motion



The Superconducting Josephson Junction as a Driven Damped Pendulum

 = phase difference of SC wave-function across the junction
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The Josephson
Equations



Radio Frequency (RF) Superconducting Quantum Interference Devices (SQUIDs)
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Single rf-SQUID D. Zhang, et al., Phys. Rev. X (in press), arXiv:1504.08301



D. Zhang, et al., Phys. Rev. X (in press), arXiv:1504.08301



THz Emission from the Intrinsic Josephson Effect
A classic problem in nonlinear physics

DC voltage on junction creates
an oscillating (t), which in turn
creates an AC current that
radiates

0 = h/2e = 2.07 x 10-15 Tm2

Best emission is seen when the crystal is 
partially heated above Tc!

Results are extremely sensitive to details
(number of layers, edge properties, type
of material, width of mesa, etc.)

Many competing states do not show
emission

Emission enhanced near cavity mode
resonances → requires non-uniform
current injection, assisted by inhom. 
heating, -phase kinks, crystal defects

)V(V
h
efJJ THz/mV 483.02



L. Ozyuzer, et al., Science 318, 1291 (2007)
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 Linear Maps for “Integrable” systems !!
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 Non-Linear Maps for “Chaotic” systems !!
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• The “Chaos” arises due to the shape of the boundaries enclosing the system.

Chaos in Newtonian Billiards
Imagine a point-particle trapped in a 2D enclosure and making 

elastic collisions with the walls

Describe the successive wall-collisions
with a “mapping function” 

Computer animation of extreme sensitivity to initial conditions for the stadium billiard


